Công thức nghiệm của phương trình bậc hai là dạng bài tập cơ bản trong chương trình toán lớp 9 trung học cơ sở. Bài viết sau đây cung cấp lý thuyết, bài tập trắc nghiệm và tự luận dạng toán công thức nghiệm của phương trình bậc hai. Mời các bạn cùng tham khảo
Mục lục bài viết
1. Lý thuyết công thức nghiệm của phương trình bậc hai:
Phương trình ax2 + bx + c = 0 (a ≠ 0) và biệt thức Δ = b2 – 4ac
+ Nếu Δ > 0 thì phương trình có hai nghiệm phân biệt
+ Nếu Δ = 0 thì phương trình có nghiệm kép là
+ Nếu Δ < 0 thì phương trình vô nghiệm.
Nếu phương trình ax2 bx + c = 0 (a ≠ 0) có a và c trái dấu, tức là ac < 0. Khi đó ta có Δ = b2 – 4ac > 0 ⇒ Phương trình có hai nghiệm phân biệt x1, x2
2. Bài tập tự luận công thức nghiệm của phương trình bậc hai:
Câu 1: Hãy giải phương trình x2 – 5x + 4 = 0
Lời giải:
+ Tính Δ = (-5)2 – 4.4.1 = 25 – 16 = 9 > 0
+ Do Δ > 0 , phương trình có hai nghiệm là:
Vậ
Câu 2: Giải phương trình 5x2 – x + 2 = 0
Lời giải:
+ Tính Δ = (-1)2 – 4.5.2 = -39 < 0
+ Do Δ < 0, phương trình đã cho vô nghiệm
Vậy phương trình đã cho vô nghiệm
Câu 3: Giải phương trình x2 – 4x + 4 = 0.
Lời giải:
+ Tính Δ = (-4)2 – 4.4.1 = 16 – 16 = 0.
+ Do Δ = 0, phương trình có nghiệm kép là x1 = x2 = -4/(2.1) = 2
Vậy phương trình có nghiệm kép là x = 2
Câu 4: Giải phương trình x2 + 14x + 49 = 0; x2 – 2x – 5 = 0
Lời giải:
Câu 5: Cho phương trình -x2 + 2x + 20172017 = 0 . Không giải phương trình, hãy cho biết phương trình đã cho có bao nhiêu nghiệm?
Lời giải:
Ta có: Δ=b2 – 4ac
Nhận thấy: b2 > 0; ac = -20172017 < 0 ⇒ -4ac > 0
Do đó: Δ = b2 – 4ac > 0
⇒ Phương trình đã cho có hai nghiệm phân biệt
Vậy phương trình đã cho có hai nghiệm phân biệt
3. Trắc nghiệm bài tập công thức nghiệm của phương trình bậc hai:
Câu 1: cho biết nghiệm của phương trình x2 + 100x + 2500 = 0 là?
A. 50
B. -50
C. ± 50
D. ± 100
Lời giải:
Ta có:
Chọn đáp án B.
Câu 2: Cho phương trình ax2 + bx + c = 0 (a ≠ 0) có biệt thức Δ = b2 – 4ac. Phương trình đã cho vô nghiệm khi:
A. Δ < 0
B. Δ = 0
C. Δ ≥ 0
D. Δ ≤ 0
Lời giải:
Xét phương trình bậc hai một ẩn ax2 + bx + c = 0 (a ≠ 0) và biệt thức Δ = b2 – 4ac
• TH1: Nếu thì phương trình vô nghiệm
• TH2: Nếu thì phương trình có nghiệm kép x1 = x2 =
• TH3: Nếu thì phương trình có hai nghiệm phân biệt x1,2 =
Chọn đáp án A.
Câu 3: Cho phương trình ax2 + bx + c = 0 (a ≠ 0) có biệt thức Δ = b2 – 4ac. Khi đó phương trình có hai nghiệm là:
Lời giải:
– TH1: Nếu thì phương trình vô nghiệm
– TH2: Nếu thì phương trình có nghiệm kép x1 = x2 =
– TH3: Nếu thì phương trình có hai nghiệm phân biệt x1,2 =
Chọn đáp án C.
Câu 4: Không dùng công thức nghiệm, tính tổng các nghiệm của phương trình 6x2 – 7x = 0
Lời giải:
Ta có:
Chọn đáp án B.
Câu 5: Không dùng công thức nghiệm, tìm số nghiệm của phương trình -4x2 + 9 = 0
A. 0
B. 1
C. 3
D. 2
Lời giải:
Ta có:
Nên số nghiệm của phương trình là 2.
Chọn đáp án D.
Câu 6: Cho phương trình x2 – 6x + m = 0. Tìm m để phương trình đã cho vô nghiệm?
A. m > 9
B. m < 9
C.m < 4
D. m > 4
Lời giải:
Ta có:
Chọn đáp án A.
Câu 7: Cho phương trình (m + 1)x2 + 4x + 1 = 0. Tìm m để phương trình đã cho có nghiệm
A. m = -1
B. m = 0
C. m < 1
D. m ≤ 3
Lời giải:
– Với m = -1 thì phương trình đã cho trở thành: 4x + 1 = 0 ⇔ x = -1/4
Do đó, m = -1 thỏa mãn điều kiện.
– Nếu m ≠ -1 , khi đó phương trình đã cho là phương trình bậc hai một ẩn.
Ta có: Δ = 42 – 4.(m + 1).1 = 16 – 4m – 4 = 12 – 4m
Để phương trình đã cho có nghiệm khi: Δ = 12 – 4m ≥ 0
-4m ≥ – 12 ⇔ m ≤ 3
Kết hợp 2 trường hợp trên đã nêu, để phương trình đã cho có nghiệm thì có m ≤ 3 .
Chọn đáp án D.
Câu 8: Cho phương trình 2x2 + 3x – 4 = 0 . Tìm mệnh đề sai trong các mệnh đề sau?
A. Phương trình đã cho có 2 nghiệm
B. Biệt thức ∆ = 41
C. Phương trình đã cho có nghiệm duy nhất
D. Phương trình đã cho có 2 nghiệm âm.
Lời giải:
Ta có: Δ = 32 – 4.2.(-4) = 9 + 32 = 41 > 0
Do đó, phương trình đã cho có 2 nghiệm phân biệt là:
Vậy C sai.
Chọn đáp án C.
Câu 9: Trong các phương trình sau, phương trình nào có 1 nghiệm duy nhất.
A. x2 – 4x+ 10 = 0
B. –2x2 + 4x + 4 = 0
C. -3x2 + 9 = 0
D. 4x2 – 4x + 1 =0
Lời giải:
Ta tính ∆ của các phương trình đã cho:
A. ∆ = (-4)2 – 4.1.10 = 16 – 40 = 24 > 0 nên phương trình này có hai nghiệm phân biệt
B. ∆ = 42 -4.(-2).4 = 16 + 32 = 48 > 0 nên phương trình này có hai nghiệm phân biệt.
C. ∆ = 02 – 4. (-2). 4 = 0 + 32 = 32 > 0 nên phương trình này có hai nghiệm phân biệt.
D. ∆ = (-4)2 – 4.4.1 = 0 nên phương trình này có một nghiệm duy nhất.
Chọn đáp án D.
Câu 10: Tìm các giao điểm của đồ thị hàm số y = 2x2 và đường thẳng y = – 4x + 6
A. A(1; 2) và B(- 3; 18)
B. A(1; 2) và B(3; -6)
C. A( 3; -6) và B( -1; 10)
D. Đáp án khác
Lời giải:
Hoành độ giao điểm của parabol và đường thẳng đã cho là nghiệm phương trình này:
2x2 = -4x + 6 2x2 + 4x – 6 = 0 (*)
Phương trình này có Δ = 42 – 4.2.(-6) = 16 + 48 = 64
Do đó, phương trình (*) có hai nghiệm phân biệt:
Với x = 1 thì y = -4. 1 + 6 = 2 ta được điểm A(1; 2).
Với x = -3 thì y = -4.(-3) = 18 ta được điểm B( -3; 18)
Vậy parabol cắt đường thẳng tại hai điểm là A( 1;2) và B(- 3 ; 18)
Chọn đáp án A.
Câu 11: Cho phương trình (m + 1)x2 – 2(m + 1)x + 1 = 0. Tìm các giá trị của m để phương trình có hai nghiệm phân biệt
A. m > 0
B. m < −1
C. −1 < m < 0
D. Cả A và B đúng
Lời giải:
Phương trình (m + 1)x2 – 2(m + 1)x + 1 = 0 có a = m + 1; b’ = − (m + 1); c = 1
Suy ra ∆’ = [− (m + 1)]2 – (m + 1) = m2 + m
Để phương trình (m + 1)x2 – 2(m + 1)x + 1 = 0 có hai nghiệm phân biệt thì:
Vậy m > 0 hoặc m < −1 thì phương trình luôn có hai nghiệm phân biệt
Chọn đáp án D
Câu 12: Cho phương trình (m – 3)x2 – 2mx + m − 6 = 0. Tìm tất cả các giá trị của m để phương trình vô nghiệm
A. m < −2
B. m < 2
C. m < 3
D. m < −3
Lời giải:
Ta có phương trình (m – 3)x2 – 2mx + m − 6 = 0 có a = m – 3; b’ = −m; c = m – 6
Suy ra ∆’ = (−m)2 – (m − 3)(m – 6) = 9m – 18
Đáp án cần chọn là: B
Câu 13: Cho phương trình mx2 – 4(m – 1) x + 2 = 0. Tìm tất cả các giá trị của m để phương trình vô nghiệm.
Lời giải:
Phương trình mx2 – 4(m – 1) x + 2 = 0 có a = m; b’ = −2(m – 1); c = 2
Suy ra ∆’ = [−2(m – 1)]2 – m.2 = 4m2 – 10m + 4
TH1: m = 0 ta có phương trình 4x + 2 = 0 nên loại m = 0
TH2: m ≠ 0. Để phương trình vô nghiệm thì
Vậy chọn đáp án C