Tích có hướng của hai vectơ trong không gian là một phép toán trong đại số tuyến tính. Công thức tính Tích có hướng của 2 vecto trong không gian được chúng minh tổng hợp qua bài viết dưới đây. Mời các bạn cùng theo dõi để nắm rõ nhé.
Mục lục bài viết
1. Công thức tính tích có hướng của 2 vecto trong không gian:
Trong không gian Oxyz cho hai vecto a→=(a1;a2;a3 ) và b→=(b1;b2;b3 ). Tích có hướng của hai vecto a→ và b→ , kí hiệu là [a→ , b→ ], được xác định bởi
Chú ý: Tích có hướng của hai vecto là một vecto, tích vô hướng của hai vecto là một số.
-Tính chất
+ [a→, b→ ]⊥ a→ ; [a→ , b→ ]⊥ b→
+ [a→ , b→ ]=-[b→, a→ ]
+ [i→, j→ ]=k→ ; [ j→ , k→ ]= i→ ; [k→ , i→ ]= j→
+ |[ a→ , b→ ]|=| a→ |.| b→ |.sin( a→ , b→ )
+ a→ , b→ cùng phương ⇔ [a→ , b→ ]= 0→ (chứng minh 3 điểm thẳng hàng)
2. Bài tập về công thức tính tích có hướng của 2 vecto trong không gian:
Bài 1: Trong không gian với hệ trục tọa độ Oxyz, cho 4 điểm A(1; 0; 1), B(-1; 1; 2), C(-1; 1; 0), D(2; -1; -2). Hãy trả lời các câu hỏi:
a) Chứng minh rằng A, B, C, D là 4 đỉnh của một tứ diện.
b) Tính thể tích tứ diện ABCD. Suy ra độ dài đường cao của tứ diện qua đỉnh A
Lời giải:
AB→ =(-2;1;1); AC→ =(-2;1; -1); AD→ =(1; -1; -3)
⇒[AB→ , AC→ ]=(-2;-4;0) ⇒[ AB→ , AC→ ]. AD→ =2≠0
⇒AB→ , AC→ , AD→ không đồng phẳng.
Vậy A, B, C, D là 4 đỉnh của một tứ diện.
b) VABCD=1/6 |[AB→ , AC→ ]. AD→ |=2/6=1/3
Ta có: BC→ =(0;0; -2), BD→ =(3; -2; -4)
⇒[ BC→ , BD→ ]=(-4; -6;0)⇒SBCD=1/2 |[BC→ , BD→ ]|=√13
VABCD=1/3 d(A;(BCD)).SBCD
⇒d(A;(BCD))
Bài 2: Trong không gian hệ trục tọa độ Oxyz, cho 4 điểm A(-3; 5; 15), B(0; 0; 7), C(2; -1; 4), D(4; -3; 0). Hãy chứng minh AB và CD cắt nhau.
Lời giải:
+ Ta có: AB→ =(3; -5; -8); AC→ =(5; -6; -11);
AD→ =(7; -8; -15), CD→ =(2; -2; -4)
⇒[ AB→ , AC→ ]=(7;-7;7) ⇒[ AB→ ,(AC) ⃗ ].(AD) ⃗=0
⇒ AB→ , AC→ , AD→ đồng phẳng.
⇒ A, B, C, D cùng thuộc một mặt phẳng (1)
+ [AB→ , CD→ ]=(4; -4;4) ≠0→ ⇔ AB→ , CD→ không cùng phương (2)
Từ (1) và (2) suy ra AB và CD cắt nhau.
Bài 3: Trong không gian với hệ trục tọa độ Oxyz, cho hình hộp ABCD.EFGH với A(1; 1; 1), B(2; 1; 2), E(-1; 2; -2), D(3; 1; 2). Hãy tính khoảng cách từ A đến mặt phẳng (DCGH)
Lời giải:
+ AB→=(1;0;1), AD→=(2;0;1), AE→=(-2;1; -3)
⇒[ AB→ , AD→ ]=(0;1;0)⇒[ AB→ , AD→ ]. AE→=1
⇒VABCD.EFGH=|[ AB→ , AD→ ]. AE→ |=1
+ SAEFB=|[ AB→ , AE→ ]|=√3
⇒SDCGH=SAEFB=√3
VABCD.EFGH=d(A;(DCGH)).SDCGH
⇒d(A;(DCGH))
3. Bài tập vận dụng:
Bài 1: Trong không gian với hệ toạ độ Oxyz, cho ba điểm A(-2;2;1), B(1;0;2), C(-1;2;3). Hãy tính diện tích tam giác ABC:
A. (3√5)/2 B. 3√5
C. 4√5 D. 5/2
Lời giải:
Đáp án : B
Giải thích :
AB→ =(3; -2;1); AC→ =(1;0;2)⇒[AB→ , AC→ ]=(-4; -5;2)
SABC=1/2 |[AB→ , AC→ ]|=(3√5)/2
Bài 2: Trong không gian với hệ toạ độ Oxyz, cho bốn điểm A(1;0;0), B(0;1;0), C(0;0;1) và D(-2;1;-1). Thể tích của tứ diện ABCD là bao :
A. 1 B. 2
C. 1/3 D. 1/2
Lời giải:
Đáp án : D
Giải thích :
AB→ =(-1; 1;0); AC→=(-1;0;1); AD→=(-3;1; -1)
⇒[AB→ , AC→ ]=(1;1;1)⇒ AD→ . [AB→ , AC→ ]=-3
VABCD=1/6 |AD→ . [AB→ , AC→ ]|=1/2
Bài 3: Trong không gian với hệ toạ độ Oxyz, cho tam giác ABC biết A(2;-1;6), B(-3;-1;-4), C(5;-1;0). Hãy cho biết bán kính đường tròn nội tiếp tam giác ABC là bao nhiêu:
A. √5 B. √3
C. 4√2 D. 2√5
Lời giải:
Đáp án : A
Giải thích :
AB→=(-5; 0;-10); AC→=(3;0;-6); BC→=(8;0;4)
AB=5√5;AC=3√5;BC=4√5
SABC=1/2 |[ AB→ , AC→ ]|=30
Gọi r là bán kính đường tròn nội tiếp tam giác ABC, p là nửa chu vi tam giác
Ta có:
S=pr
⇒r =√5
Bài 4: Trong không gian với hệ toạ độ Oxyz, cho tứ diện ABCD biết A(2;-1;1), B(5;5;4), C(3;2;-1), D(4;1;3). Hãy cho biết thể tích tứ diện ABCD là bao nhiêu:
A. 3 B. 4
C. 9 D. 6
Lời giải:
Đáp án : C
Giải thích :
AB→=(3; 6;3); AC→=(1;3;-2); AD→=(2;-2; 2)
⇒[ AB→ , AC→ ]=(-21;9;3)⇒ AD→ . [AB→ , AC→ ]=-54
VABCD=1/6 |AD→ . [AB→ , AC→ ]|=9
Bài 5: Trong không gian Oxyz cho tứ diện ABCD. Độ dài đường cao vẽ từ D của tứ diện ABCD cho bởi công thức nào dưới đây:
A.
B.
C.
D.
Lời giải:
Đáp án : D
Bài 6: Trong không gian với hệ toạ độ Oxyz, cho tam giác ABC biết A(1;0;0), B(0;0;1), C(2;1;1). Độ dài đường cao của tam giác ABC kẻ từ A là bao nhiêu:
A. (2√30)/5 B. (√30)/5
C. (√10)/5 D. (√6)/2
Lời giải:
Đáp án : B
Giải thích :
AB→=(-1; 0;1); AC→=(1;1;1)⇒[AB→ , AC→ ]=(-1;2;-1)
SABC=1/2 |[ AB→ , AC→ ]|=√6/2
BC=| BC→ |=√5
SABC=1/2 h.BC ⇒h=(2S)/BC=√(30)/5
Bài 7: Trong không gian với hệ toạ độ Oxyz, cho hình chóp S.OAMN với S(0;0;1), A(1;1;0), M(m;0;0), N(0;n;0). Trong đó m>0, n>0 và m+n=6. Hãy cho biết thể tích hình chóp S.OAMN là:
A. 1 B. 2
C. 4 D. 6
Lời giải:
Đáp án : A
Giải thích :
OA→=(1;1;0), OM→=(m;0;0), ON→=(0;n;0), OS→=(0;0;1)
[ OA→ , OM→ ]=(0;0; -m)⇒ OS→ . [ OA→ , OM→ ]=(0;0; -m)
⇒VS.OAM=1/6 |OS→ . [OA→ , OM→ ]|=m/6
[OA→ , ON→ ]=(0;0; m)⇒ OS→ . [OA→ , OM→ ]=(0;0; n)
⇒VS.OAN=1/6 |OS→ . [OA→ , ON→ ]|=n/6
Ta có:
VS.OAMN=m/6+n/6=(m+n)/6=1
Bài 8: Cho A(1;-2;0), B(3;3;2), C(-1;2;2), D(3;3;1). Thể tích của tứ diện ABCD là bao nhiêu:
A. 3 B. 4
C. 5 D. 6
Lời giải:
Đáp án : A
Giải thích :
AB→=(2;5-;2); AC→=(-2;4;2); AD→=(2;5;1)
⇒[AB→ , AC→ ]=(2; -8;18) ⇒ AD→ . [AB→ , AC→ ]=-18
VABCD=1/6 |AD→ . [AB→ , AC→ ]|=3
Bài 9: Trong không gian với hệ toạ độ Oxyz, cho tứ diện ABCD biết A(2;-1;6), B(-3;-1;-4), C(5;-1;0), D(1;2;1). Hãy cho biết độ dài đường cao AH của tứ diện ABCD là:
A. 5 B. 6
C. 7 D. 9
Lời giải:
Đáp án : D
Giải thích :
Áp dụng công thức:
tính được: h= 9
Bài 10: Trong không gian với hệ toạ độ Oxyz, cho A(1; 0; 0); B(0; 1; 0), C(0; 0; 1), D(1; 1; 1). Trong các mệnh đề dưới đây, cho biết mệnh đề nào sai ?
A. Bốn điểm A, B, C, D không đồng phẳng.
B. Tam giác ABD là tam giác đều.
C. AB⊥CD
D. Tam giác BCD là tam giác vuông.
Lời giải:
Đáp án : D
Bài 11: Trong không gian với hệ toạ độ Oxyz, cho các điểm A(4;0;0), B(x0;y0;0) với x0>0, y0>0 sao cho OB=8 và góc AOBˆ=600 . Gọi C(0;0;c) với c>0. Hãy cho biết để thể tích tứ diện OABC bằng 16√3 thì giá trị thích hợp của c là bao nhiêu:
A. 6 B. 3
C. √3 D. 6√3
Lời giải:
Đáp án : A
Giải thích :
OA→=(4;0;0), OB→=(x0;y0;0); OC→=(0;0;c)
OB=√(x02+y02 )=8 ⇒y0=4√3
OA→=(4;0;0); OB→=(4;4√3;0) ⇒[ OA→ , OB→ ]=(0;0;16√3)
⇒ OC→[ OA→ , OB→ ]=16c√3
VABCD=1/6 |OC→ [ OA→ , OB→]|=1/6.16c√3=16√3 ⇒c=6
Bài 12: Trong không gian với hệ toạ độ Oxyz, cho A(2;-1;6), B(-3;-1;-4), C(5;-1;0), D(1;2;1). Hãy cho biết thể tích của tứ diện ABCD bằng bao :
A. 30 B. 40
C. 50 D. 60
Lời giải:
Đáp án : A
Giải thích :
VABCD=1/6 |AD→ . [ AB→ , AC→ ]|=30
Bài 13: Trong không gian với hệ toạ độ Oxyz, cho A(2;1;-1), B(3;0;1), C(2;-1;3) điểm D thuộc Oy và thể tích tứ diện ABCD bằng 5. Tọa độ của D là bao nhiêu:
Lời giải:
Đáp án : C
Giải thích :
D thuộc Oy ⇒ D(0;y;0)
AB→=(1;-1;2); AC→=(0;-2;4); AD→=(-2;y-1;1)
⇒ [AB→ , AC→ ]=(0; -4;-2) ⇒ AD→ . [AB→ , AC→ ]=2-4y
VABCD=1/6 |AD→ . [ AB→ , AC→ ]|=|2-4y|/6=5
⇒ |2-4y|=30