Bài viết về Công thức xác định vectơ chỉ phương của đường thẳng với phương pháp giải và ví dụ minh họa chi tiết giúp học sinh ôn tập, biết cách làm bài tập Cách tìm vecto chỉ phương của đường thẳng. Mời các bạn đọc theo dõi và tìm hiểu nhé.
Mục lục bài viết
1. Vectơ chỉ phương của đường thẳng là gì?
Cho đường thẳng Δ. Ta có vecto u≠0 gọi là vecto chỉ phương ( viết tắt: VTCP) của đường thẳng Δ nếu giá của nó song song hoặc trùng với Δ.
Giá của một vecto chính là đường thẳng đi qua điểm gốc và điểm ngọn của vecto đó.
Nhận xét
– Nếu vecto u = ( a; b) là VTCP của đường thẳng Δ thì vectơ ku (k≠0) cũng là VTCP của Δ. Do vậy, một đường thẳng có vô số vecto chỉ phương.
– Một đường thẳng hoàn toàn được xác định khi biết một điểm ∈ nó và VTCP của đường thẳng đó.
– VTCP và VTPT (Vecto pháp tuyến) vuông góc với nhau. Do đó, nếu Δ có một VTCP là vectơ u=(a;b) thì vectơ n =(−b;a) là một VTPT của Δ.
2. Phương trình tham số của đường thẳng:
Định nghĩa
Trong mặt phẳng Oxy cho đường thẳng Δ đi qua điểm Mo(x0;y0) và nhận vectơ u=(u1;u2) làm vectơ chỉ phương.
Với mỗi điểm M(x ; y) bất kì trong mặt phẳng, ta có vectơ MMo = (x−x0;y−y0)
Khi đó M∈Δ⇔ vectơ MMo cùng phương với vectơ u ⇔ vectơ MMo = vectơ tu
⇔ x − x0 = tu1 ⇔ x = x0 + tu1
y − y0 = tu2 y = y0 + tu2
Hệ phương trình trên được gọi là phương trình tham số của đường thẳng Δ, trong đó t là tham số.
Cho t một giá trị cụ thể thì ta xác định được một điểm trên đường thẳng Δ.
3. Công thức xác định vectơ chỉ phương của đường thẳng:
– Cho đường thẳng d, một vecto u được gọi là VTCP của đường thẳng d nếu vecto u có giá song song hoặc trùng với đường thẳng d.
– Nếu vecto u ( a; b) là VTCP của đường thẳng d thì vecto k.u ( với k ≠ 0) cũng là VTCP của đường thẳng d.
– Nếu đường thẳng d có VTPT n ( a; b) thì đường thẳng d nhận vecto n→( b; -a) và n’→( – b;a) làm VTPT.
4. Ứng dụng trong mặt phẳng tọa độ:
Những bài toán ứng dụng tính chất của vectơ chỉ phương thường gặp nhất:
– Xác định vectơ chỉ phương cho trước.
– Viết phương trình đường thẳng đi qua một điểm và VTCP cho trước.
– Xác định vị trí tương đối của 2 đường thẳng.
– Tính khoảng cách từ một điểm đến một đường thẳng.
– Biện luận, chứng minh phương trình đường thẳng.
Các tính chất của vecto chỉ phương sẽ xuất hiện xuyên suốt trong các bài tập tổng hợp về phương trình đường thẳng, học sinh cần nắm vững nội dung định nghĩa, tính chất của vectơ pháp tuyến.
5. Ví dụ minh họa và lời giải:
Câu 1: Vectơ chỉ phương của đường thẳng d là:
A. u1→ = (2; -3) B. u2→ = (3; -1) C. u3→ = (3; 1) D. u4→ = (3; -3)
Lời giải
Một VTCP của đường thẳng d là u→( 3; -1)
Chọn B
Câu 2: Vectơ nào dưới đây là một vectơ chỉ phương của đường thẳng đi qua hai điểm A(-3; 2) và B( 1; 4) ?
A. u1→ = (-1; 2) B. u2→ = (2; 1) C. u3→ = (- 2; 6) D. u4→ = (1; 1)
Lời giải
+ Đường thẳng AB đi qua hai điểm A và B nên đường thẳng này nhận vecto AB→( 4; 2) làm vecto chỉ phương .
+ Lại có vecto AB→ và u→( 2;1) là hai vecto cùng phương nên đường thẳng AB nhận vecto u→( 2;1) là VTCP.
Chọn B.
Câu 3: Vectơ chỉ phương của đường thẳng = 1 là:
A. u4→ = (-2; 3) B. u2→ = (3; -2) C. u3→ = (3; 2) D. u1→ = (2; 3)
Hướng dẫn giải:
Ta đưa phương trình đường thẳng đã cho về dạng tổng quát:
= 1 ⇔ 2x + 3y – 6 = 0 nên đường thẳng có VTPT là n→ = (2; 3)
Suy ra VTCP là u→ = (3; – 2) .
Chọn B.
Câu 4: Vectơ chỉ phương của đường thẳng d: 2x – 5y – 100 = 0 là :
A. u→ = (2; -5) B. u→ = (2; 5) C. u→ = (5; 2) D. u→=( -5; 2)
Lời giải
Đường thẳng d có VTPT là n→( 2 ;- 5) .
⇒ đường thẳng có VTCP là u→( 5 ; 2).
Chọn C.
Câu 5 : Vectơ nào dưới đây là một vectơ pháp tuyến của đường thẳng đi qua hai điểm A(2 ; 3) và B( 4 ;1)
A. n→ = (2; -2) B. n→ = (2; -1) C. n→ = (1; 1) D. n→ = (1; -2)
Lời giải
Đường thẳng AB nhận vecto AB→( 2; -2) làm VTCP nên đường thẳng d nhận vecto
n→( 1; 1) làm VTPT.
Chọn C.
Câu 6. Vectơ nào dưới đây là một vectơ chỉ phương của đường thẳng song song với trục Ox
A. u1→ = (1; 0). B. u2→ = (0; -1) C. u3→ = (1; 1) D. u4→ = (1; – 1)
Lời giải
Trục Ox có phương trình là y= 0; đường thẳng này có VTPT n→( 0;1)
⇒ đường thẳng này nhận vecto u→( 1; 0) làm VTCP.
⇒ một đường thẳng song song với Ox cũng có VTCP là u1→=(1; 0).
Chọn A.
Câu 7: Cho đường thẳng d đi qua A( 1; 2) và điểm B(2; m) . Tìm m để đường thẳng d nhận u→( 1; 3) làm VTCP?
A. m = – 2 B. m = -1 C. m = 5 D. m = 2
Lời giải
Đường thẳng d đi qua hai điểm A và B nên đường thẳng d nhận vecto AB→( 1; m – 2) làm VTCP.
Lại có vecto u→( 1; 2) làm VTCP của đường thẳng d. Suy ra hai vecto u→ và AB→ cùng phương nên tồn tại số k sao cho: u→ = kAB→
⇒
Vậy m= 5 là giá trị cần tìm .
Chọn C.
Câu 8: Cho đường thẳng d đi qua A(- 2; 3) và điểm B(2; m + 1) . Tìm m để đường thẳng d nhận u→( 2; 4) làm VTCP?
A. m = – 2 B. m = -8 C. m = 5 D. m = 10
Lời giải
Đường thẳng d đi qua hai điểm A và B nên đường thẳng d nhận vecto AB→( 4; m – 2) làm VTCP.
Lại có vecto u→(2; 4) làm VTCP của đường thẳng d. Suy ra hai vecto u→ và ab→ cùng phương nên tồn tại số k sao cho: u→ = kAB→
Vậy m = 10 là giá trị cần tìm .
Chọn D.
Câu 9. Vectơ nào dưới đây là một vectơ chỉ phương của đường thẳng đi qua hai điểm A( a; 0) và B( 0; b)
A. u→( -a; b) B. u→( a; b) C. u→( a + b; 0) D. u→( – a; – b)
Lời giải
Đường thẳng AB đi qua điểm A và B nên đường thẳng này nhận AB→(-a;b) làm vecto chỉ phương.
Chọn A.
Câu 10 . Đường thẳng d có một vectơ pháp tuyến là u→ = (-2; -5) . Đường thẳng ∆ vuông góc với d có một vectơ chỉ phương là:
A. u1→ = (5; -2) B. u2→ = (-5; 2) C. u3→ = (2; 5) D. u4→ = (2; -5)
Lời giải
Khi hai đường thẳng vuông góc với nhau thì VTCP của đường thẳng này là VTPT của đường thẳng kia nên :
Lại có hai vecto u∆→( -2; -5) và u→( 2;5) cùng phương nên đường thẳng ∆ nhận vecto u→( 2; 5) làm VTCP.
Chọn C.
Câu 11. Đường thẳng d có một vectơ chỉ phương là u→ = (3; -4). Đường thẳng ∆ song song với d có một vectơ pháp tuyến là:
A. n1→ = (4; 3) B. n2→ = (- 4; 3) C. n3→ = (3; 4) D. n4→ = (3; – 4)
Lời giải
Khi hai đường thẳng song song với nhau thì VTCP ( VTPT) của đường thẳng này cũng là VTCP (VTPT) của đường thẳng kia nên:
→ u∆→ = ud→ = (3; -4) → n∆→ = (4; 3)
Chọn A
Câu 12: Vectơ nào dưới đây là một vectơ chỉ phương của đường thẳng song song với trục Oy?
A. u1→ = (1; 0). B. u2→ = (0; 1) C. u3→ = (1; 1) D. u4→ = (1; -1)
Lời giải:
Đáp án: B
Trục Oy có phương trình tổng quát là : x= 0. Đường thẳng này nhận vecto n→(1;0) làm VTPT.
⇒ Đường thẳng x= 0 nhận vecto u→( 0; 1) làm VTCP.
⇒ Một đường thẳng song song với Oy cũng có VTCP là j→(0;1)
Câu 13: Vectơ nào dưới đây là một vectơ chỉ phương của đường thẳng đi qua hai điểm A(1;2) và B( -3;6)
A. u→( 1; 1) B. u→( 1; -1) C. u→( 2; -3) D. u→(- 1; 2)
Lời giải:
Đáp án: B
Đường thẳng AB đi qua hai điểm A và B nên nhận vecto AB→( -4; 4) VTCP .
Lại có hai vecto AB→( -4;4) và u→( 1; -1) là hai vecto cùng phương .
⇒ đường thẳng AB nhận vecto u→( 1; -1) làm VTCP.
Câu 14: Vectơ nào dưới đây là một vectơ chỉ phương của đường thẳng đi qua gốc tọa độ O( 0; 0) và điểm M( a; b)
A. u→( 0; a + b) B. u→( a; b) C. u→( a; – b) D. u→( -a; b)
Lời giải:
Đáp án: B
Đường thẳng OM đi qua điểm M và O nên đường thẳng này nhận OM→( a;b) làm vecto chỉ phương.
Câu 15: Vectơ nào dưới đây là một vectơ pháp tuyến của đường thẳng đi qua hai điểm A(1; -8) và B(3; -6)
A. n1→ = (2; 2). B. n2→ = (0; 0) C. n3→ = (8; -8) D. n4→ = (2; 3)
Lời giải:
Đáp án: C
Đường thẳng AB đi qua hai điểm A và B nên đường thẳng này nhận vectơ AB( 2;2) làm VTCP.
Lại có: AB→( 2;2) và n→( 8; -8) vuông góc với nhau( vì tích vô hướng của hai vecto đó bằng 0)
⇒ đường thẳng AB nhận vecto n→( 8; -8) là VTPT.
Câu 16: Đường thẳng d có một vectơ chỉ phương là u→ = (2; -1). Trong các vectơ sau, vectơ nào là một vectơ pháp tuyến của d?
A. n→( -1; 2) B. n→(1; -2) C. n→(-3; 6) D. n→( 3;6)
Lời giải:
Đáp án: D
Đường thẳng d có VTCP là u→( 2;-1) nên đường thẳng này có VTPT là n→( 1;2) .
Lại có vecto n’→(3;6) cùng phương với vecto n→ nên đường thẳng đã cho nhận vecto
n’→(3;6) làm VTPT.
Câu 17: Đường thẳng d có một vectơ pháp tuyến là n→ = (4; -2) . Trong các vectơ sau, vectơ nào là một vectơ chỉ phương của d?
A. u1→ = (2; -4) B. u2→ = (-2; 4) C. u3→ = (1; 2) D. u4→ = (2; 1)
Lời giải:
Đáp án: C
Đường thẳng d có VTPT n→( 4; -2) nên có VTCP u→(2;4) .
Mà u→( 2;4) và v→( 1;2) cùng phương nên đường thẳng đã cho nhận v→( 1;2) làm VTCP.
Câu 18: Đường thẳng d có một vectơ chỉ phương là u→ = (3; -4). Đường thẳng ∆ vuông góc với d có một vectơ pháp tuyến là:
A. n1→ = (4; 3) B. n2→ = (-4; -3) C. n3→ = (3; 4) D. n4→ = (3; – 4)
Lời giải:
Đáp án: D
Khi hai đường thẳng vuông góc với nhau thì VTCP của đường thẳng này là VTPT của đường thẳng kia nên :
→ n∆→ = ud→ = (3; -4)
Câu 19: Đường thẳng d có một vectơ pháp tuyến là n→ = (-2; -5) . Đường thẳng song song với d có một vectơ chỉ phương là:
A. u1→ = (5; -2) B. u2→ = (-5; -2) C. u3→ = (2; 5) D. u4→ = (2; -5)
Lời giải:
Đáp án: A
Câu 21: Vectơ nào dưới đây là một vectơ pháp tuyến của d:
A. n1→ = (2; -1) . B. n2→ = (-1; 2) . C. n3→ = (1; -2) . D. n4→ = (1; 2) .
Lời giải:
Đáp án: D
d: → ud→ = (2; -1) → nd→ = (1; 2)
Câu 22: Vectơ nào dưới đây là một vectơ chỉ phương của d: 2x – 3y + 2018 = 0
A. u1→ = (-3; -2) . B. u2→ = (2; 3) . C. u3→ = (-3; 2) . D. u4→ = (2; -3) .
Lời giải:
Đáp án: A
Đường thẳng d: 2x – 3y + 2018 = 0 có VTPT nd→ = (2; -3)nên ud→ = (3; 2) là một VTCP của d.
⇒ Vecto ( – 3; -2) cũng là VTCP của đường thẳng d.
Câu 23: Đường trung trực của đoạn thẳng AB với A( -3; 2); B(-3; 3) có một vectơ pháp tuyến là:
A. n1→ = (6; 5). B. n2→ = (0; 1) . C. n3→ = (-3; 5) . D. n4→ = (-1; 0) .
Lời giải:
Đáp án: B
Gọi d là trung trực đoạn AB.
Suy ra đường thẳng d vuông góc với AB.
⇒ AB→( 0;1) là một VTPT của đường thẳng d.
Câu 24: Cho đường thẳng d đi qua A(-1; 2) và điểm B(m; 3) . Tìm m để đường thẳng d nhận u→( -2; 1) làm VTCP?
A. m = – 2 B. m = -1 C. m = – 3 D. m = 2
Lời giải:
Đáp án: C
Đường thẳng d đi qua hai điểm A và B nên đường thẳng d nhận vecto AB→( m + 1; 1) làm VTCP.
Lại có vecto u→( -2; 1) làm VTCP của đường thẳng d. Suy ra hai vecto u→ và AB→ cùng phương nên tồn tại số k sao cho: u→ = kAB→
Vậy m = – 3 là giá trị cần tìm .